/** * Copyright (C) 2012-2014 Steven Barth * Copyright (C) 2017-2018 Hans Dedecker * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License v2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "config.h" #include "odhcp6c.h" #define ALL_DHCPV6_RELAYS {{{0xff, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x02}}} #define DHCPV6_CLIENT_PORT 546 #define DHCPV6_SERVER_PORT 547 #define DHCPV6_DUID_LLADDR 3 #define DHCPV6_SOL_MAX_RT_MIN 60 #define DHCPV6_SOL_MAX_RT_MAX 86400 #define DHCPV6_INF_MAX_RT_MIN 60 #define DHCPV6_INF_MAX_RT_MAX 86400 static bool dhcpv6_response_is_valid(const void *buf, ssize_t len, const uint8_t transaction[3], enum dhcpv6_msg req_msg_type, const struct in6_addr *daddr); static unsigned int dhcpv6_parse_ia(void *opt, void *end, int *ret); static unsigned int dhcpv6_calc_refresh_timers(void); static void dhcpv6_handle_status_code(_o_unused const enum dhcpv6_msg orig, const uint16_t code, const void *status_msg, const int len, int *ret); static void dhcpv6_handle_ia_status_code(const enum dhcpv6_msg orig, const struct dhcpv6_ia_hdr *ia_hdr, const uint16_t code, const void *status_msg, const int len, bool handled_status_codes[_DHCPV6_Status_Max], int *ret); static void dhcpv6_add_server_cand(const struct dhcpv6_server_cand *cand); static void dhcpv6_clear_all_server_cand(void); static void dhcpv6_log_status_code(const uint16_t code, const char *scope, const void *status_msg, int len); static reply_handler dhcpv6_handle_reply; static reply_handler dhcpv6_handle_advert; static reply_handler dhcpv6_handle_rebind_reply; static reply_handler dhcpv6_handle_reconfigure; static int dhcpv6_commit_advert(void); // RFC 3315 - 5.5 Timeout and Delay values static const struct dhcpv6_retx dhcpv6_retx_default[_DHCPV6_MSG_MAX] = { [DHCPV6_MSG_UNKNOWN] = { 0, 1, 120, 0, "", dhcpv6_handle_reconfigure, NULL, false, 0, 0, 0, {0, 0, 0}, 0, 0, 0, -1, 0 }, [DHCPV6_MSG_SOLICIT] = { DHCPV6_MAX_DELAY, DHCPV6_SOL_INIT_RT, DHCPV6_SOL_MAX_RT, 0, "SOLICIT", dhcpv6_handle_advert, dhcpv6_commit_advert, false, 0, 0, 0, {0, 0, 0}, 0, 0, 0, -1, 0 }, [DHCPV6_MSG_REQUEST] = { 0, DHCPV6_REQ_INIT_RT, DHCPV6_REQ_MAX_RT, DHCPV6_REQ_MAX_RC, "REQUEST", dhcpv6_handle_reply, NULL, false, 0, 0, 0, {0, 0, 0}, 0, 0, 0, -1, 0 }, [DHCPV6_MSG_RENEW] = { 0, DHCPV6_REN_INIT_RT, DHCPV6_REN_MAX_RT, 0, "RENEW", dhcpv6_handle_reply, NULL, false, 0, 0, 0, {0, 0, 0}, 0, 0, 0, -1, 0 }, [DHCPV6_MSG_REBIND] = { 0, DHCPV6_REB_INIT_RT, DHCPV6_REB_MAX_RT, 0, "REBIND", dhcpv6_handle_rebind_reply, NULL, false, 0, 0, 0, {0, 0, 0}, 0, 0, 0, -1, 0 }, [DHCPV6_MSG_RELEASE] = { 0, DHCPV6_REL_INIT_RT, 0, DHCPV6_REL_MAX_RC, "RELEASE", NULL, NULL, false, 0, 0, 0, {0, 0, 0}, 0, 0, 0, -1, 0 }, [DHCPV6_MSG_DECLINE] = { 0, DHCPV6_DEC_INIT_RT, 0, DHCPV6_DEC_MAX_RC, "DECLINE", NULL, NULL, false, 0, 0, 0, {0, 0, 0}, 0, 0, 0, -1, 0 }, [DHCPV6_MSG_INFO_REQ] = { DHCPV6_MAX_DELAY, DHCPV6_INF_INIT_RT, DHCPV6_INF_MAX_RT, 0, "INFOREQ", dhcpv6_handle_reply, NULL, false, 0, 0, 0, {0, 0, 0}, 0, 0, 0, -1, 0 }, }; static struct dhcpv6_retx dhcpv6_retx[_DHCPV6_MSG_MAX] = {0}; // Sockets static int sock = -1; static int ifindex = -1; static int64_t t1 = 0, t2 = 0, t3 = 0; // IA states static enum odhcp6c_ia_mode na_mode = IA_MODE_NONE, pd_mode = IA_MODE_NONE; static bool stateful_only_mode = false; static bool accept_reconfig = false; // Server unicast address static struct in6_addr server_addr = IN6ADDR_ANY_INIT; // Initial state of the DHCPv6 service static enum dhcpv6_state dhcpv6_state = DHCPV6_INIT; static int dhcpv6_state_timeout = 0; // Authentication options static enum odhcp6c_auth_protocol auth_protocol = AUTH_PROT_RKAP; static uint8_t reconf_key[16]; // client options static unsigned int client_options = 0; // counters for statistics static struct dhcpv6_stats dhcpv6_stats = {0}; // config static struct config_dhcp* config_dhcp = NULL; // store unique ifname hash to use as IA->IAID static uint32_t ifname_hash_iaid = 0; static uint32_t ntohl_unaligned(const uint8_t *data) { uint32_t buf; memcpy(&buf, data, sizeof(buf)); return ntohl(buf); } static void dhcpv6_next_state(void) { dhcpv6_state++; dhcpv6_reset_state_timeout(); } static void dhcpv6_prev_state(void) { dhcpv6_state--; dhcpv6_reset_state_timeout(); } static void dhcpv6_inc_counter(enum dhcpv6_msg type) { switch (type) { case DHCPV6_MSG_SOLICIT: dhcpv6_stats.solicit++; break; case DHCPV6_MSG_ADVERT: dhcpv6_stats.advertise++; break; case DHCPV6_MSG_REQUEST: dhcpv6_stats.request++; break; case DHCPV6_MSG_RENEW: dhcpv6_stats.renew++; break; case DHCPV6_MSG_REBIND: dhcpv6_stats.rebind++; break; case DHCPV6_MSG_REPLY: dhcpv6_stats.reply++; break; case DHCPV6_MSG_RELEASE: dhcpv6_stats.release++; break; case DHCPV6_MSG_DECLINE: dhcpv6_stats.decline++; break; case DHCPV6_MSG_RECONF: dhcpv6_stats.reconfigure++; break; case DHCPV6_MSG_INFO_REQ: dhcpv6_stats.information_request++; break; default: break; } } static char *dhcpv6_msg_to_str(enum dhcpv6_msg msg) { switch (msg) { case DHCPV6_MSG_SOLICIT: return "SOLICIT"; case DHCPV6_MSG_ADVERT: return "ADVERTISE"; case DHCPV6_MSG_REQUEST: return "REQUEST"; case DHCPV6_MSG_RENEW: return "RENEW"; case DHCPV6_MSG_REBIND: return "REBIND"; case DHCPV6_MSG_REPLY: return "REPLY"; case DHCPV6_MSG_RELEASE: return "RELEASE"; case DHCPV6_MSG_DECLINE: return "DECLINE"; case DHCPV6_MSG_RECONF: return "RECONFIGURE"; case DHCPV6_MSG_INFO_REQ: return "INFORMATION REQUEST"; default: break; } return "UNKNOWN"; } static char *dhcpv6_status_code_to_str(uint16_t code) { switch (code) { case DHCPV6_Success: return "Success"; case DHCPV6_UnspecFail: return "Unspecified Failure"; case DHCPV6_NoAddrsAvail: return "No Address Available"; case DHCPV6_NoBinding: return "No Binding"; case DHCPV6_NotOnLink: return "Not On Link"; case DHCPV6_UseMulticast: return "Use Multicast"; case DHCPV6_NoPrefixAvail: return "No Prefix Available"; default: break; } return "Unknown"; } const char *dhcpv6_state_to_str(enum dhcpv6_state state) { switch (state) { case DHCPV6_INIT: return "INIT"; case DHCPV6_SOLICIT: return "SOLICIT"; case DHCPV6_SOLICIT_PROCESSING: return "SOLICIT_PROCESSING"; case DHCPV6_ADVERT: return "ADVERT"; case DHCPV6_REQUEST: return "REQUEST"; case DHCPV6_REQUEST_PROCESSING: return "REQUEST_PROCESSING"; case DHCPV6_REPLY: return "REPLY"; case DHCPV6_BOUND: return "BOUND"; case DHCPV6_BOUND_PROCESSING: return "BOUND_PROCESSING"; case DHCPV6_BOUND_REPLY: return "BOUND_REPLY"; case DHCPV6_RECONF: return "RECONF"; case DHCPV6_RECONF_PROCESSING: return "RECONF_PROCESSING"; case DHCPV6_RECONF_REPLY: return "RECONF_REPLY"; case DHCPV6_RENEW: return "RENEW"; case DHCPV6_RENEW_PROCESSING: return "RENEW_PROCESSING"; case DHCPV6_RENEW_REPLY: return "RENEW_REPLY"; case DHCPV6_REBIND: return "REBIND"; case DHCPV6_REBIND_PROCESSING: return "REBIND_PROCESSING"; case DHCPV6_REBIND_REPLY: return "REBIND_REPLY"; case DHCPV6_INFO: return "INFO"; case DHCPV6_INFO_PROCESSING: return "INFO_PROCESSING"; case DHCPV6_INFO_REPLY: return "INFO_REPLY"; case DHCPV6_EXIT: return "EXIT"; default: return "INVALID_STATE"; } } static int fd_set_nonblocking(int sockfd) { int flags = fcntl(sockfd, F_GETFL, 0); if (flags == -1) { error( "Failed to get the dhcpv6 socket flags: fcntl F_GETFL failed (%s)", strerror(errno)); return -1; } // Set the socket to non-blocking if (fcntl(sockfd, F_SETFL, flags | O_NONBLOCK) == -1) { error( "Failed to set the dhcpv6 socket to non-blocking: fcntl F_SETFL failed (%s)", strerror(errno)); return -1; } return 0; } int dhcpv6_get_socket(void) { return sock; } enum dhcpv6_state dhcpv6_get_state(void) { return dhcpv6_state; } void dhcpv6_set_state(enum dhcpv6_state state) { dhcpv6_state = state; dhcpv6_reset_state_timeout(); } int dhcpv6_get_state_timeout(void) { return dhcpv6_state_timeout; } void dhcpv6_set_state_timeout(int timeout) { if (timeout > 0 && (dhcpv6_state_timeout == 0 || timeout < dhcpv6_state_timeout)) { dhcpv6_state_timeout = timeout; } } void dhcpv6_reset_state_timeout(void) { dhcpv6_state_timeout = 0; } struct dhcpv6_stats dhcpv6_get_stats(void) { return dhcpv6_stats; } void dhcpv6_reset_stats(void) { memset(&dhcpv6_stats, 0, sizeof(dhcpv6_stats)); } static uint32_t dhcpv6_generate_iface_iaid(const char *ifname) { uint8_t hash[16] = {0}; uint32_t iaid; md5_ctx_t md5; md5_begin(&md5); md5_hash(ifname, strlen(ifname), &md5); md5_end(hash, &md5); iaid = hash[0] << 24; iaid |= hash[1] << 16; iaid |= hash[2] << 8; iaid |= hash[3]; return iaid; } int init_dhcpv6(const char *ifname) { config_dhcp = config_dhcp_get(); memcpy(dhcpv6_retx, dhcpv6_retx_default, sizeof(dhcpv6_retx)); config_apply_dhcp_rtx(dhcpv6_retx); client_options = config_dhcp->client_options; na_mode = config_dhcp->ia_na_mode; pd_mode = config_dhcp->ia_pd_mode; stateful_only_mode = config_dhcp->stateful_only_mode; auth_protocol = config_dhcp->auth_protocol; sock = socket(AF_INET6, SOCK_DGRAM | SOCK_CLOEXEC, IPPROTO_UDP); if (sock < 0) goto failure; // Detect interface struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name) - 1); if (ioctl(sock, SIOCGIFINDEX, &ifr) < 0) goto failure; ifname_hash_iaid = dhcpv6_generate_iface_iaid(ifname); ifindex = ifr.ifr_ifindex; // Set the socket to non-blocking mode if (fd_set_nonblocking(sock) < 0) goto failure; // Build our FQDN size_t fqdn_len; odhcp6c_get_state(STATE_OUR_FQDN, &fqdn_len); if(fqdn_len == 0) { char fqdn_buf[256]; gethostname(fqdn_buf, sizeof(fqdn_buf)); struct { uint16_t type; uint16_t len; uint8_t flags; uint8_t data[256]; } fqdn = {0}; int dn_result = dn_comp(fqdn_buf, fqdn.data, sizeof(fqdn.data), NULL, NULL); fqdn_len = 0; if (dn_result > 0) { fqdn.type = htons(DHCPV6_OPT_FQDN); fqdn.len = htons(1 + dn_result); fqdn.flags = 0; fqdn_len = DHCPV6_OPT_HDR_SIZE + 1 + dn_result; } odhcp6c_add_state(STATE_OUR_FQDN, &fqdn, fqdn_len); } // Create client DUID size_t client_id_len; odhcp6c_get_state(STATE_CLIENT_ID, &client_id_len); if (client_id_len == 0) { uint8_t duid[14] = {0, DHCPV6_OPT_CLIENTID, 0, 10, 0, DHCPV6_DUID_LLADDR, 0, 1}; if (ioctl(sock, SIOCGIFHWADDR, &ifr) >= 0) memcpy(&duid[8], ifr.ifr_hwaddr.sa_data, ETHER_ADDR_LEN); uint8_t zero[ETHER_ADDR_LEN] = {0, 0, 0, 0, 0, 0}; struct ifreq ifs[100], *ifp, *ifend; struct ifconf ifc; ifc.ifc_req = ifs; ifc.ifc_len = sizeof(ifs); if (!memcmp(&duid[8], zero, ETHER_ADDR_LEN) && ioctl(sock, SIOCGIFCONF, &ifc) >= 0) { // If our interface doesn't have an address... ifend = ifs + (ifc.ifc_len / sizeof(struct ifreq)); for (ifp = ifc.ifc_req; ifp < ifend && !memcmp(&duid[8], zero, ETHER_ADDR_LEN); ifp++) { memcpy(ifr.ifr_name, ifp->ifr_name, sizeof(ifr.ifr_name)); if (ioctl(sock, SIOCGIFHWADDR, &ifr) < 0) continue; memcpy(&duid[8], ifr.ifr_hwaddr.sa_data, ETHER_ADDR_LEN); } } odhcp6c_add_state(STATE_CLIENT_ID, duid, sizeof(duid)); } // Create ORO if (!(client_options & DHCPV6_STRICT_OPTIONS)) { uint16_t oro[] = { htons(DHCPV6_OPT_SIP_SERVER_D), htons(DHCPV6_OPT_SIP_SERVER_A), htons(DHCPV6_OPT_DNS_SERVERS), htons(DHCPV6_OPT_DNS_DOMAIN), htons(DHCPV6_OPT_SNTP_SERVERS), htons(DHCPV6_OPT_NTP_SERVER), htons(DHCPV6_OPT_PD_EXCLUDE), /* RFC8910: Clients that support this option SHOULD include it */ htons(DHCPV6_OPT_CAPTIVE_PORTAL), }; odhcp6c_add_state(STATE_ORO, oro, sizeof(oro)); } // Required ORO uint16_t req_oro[] = { htons(DHCPV6_OPT_INF_MAX_RT), htons(DHCPV6_OPT_SOL_MAX_RT), htons(DHCPV6_OPT_INFO_REFRESH), }; odhcp6c_add_state(STATE_ORO, req_oro, sizeof(req_oro)); // Configure IPv6-options int val = 1; if (setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, &val, sizeof(val)) < 0) goto failure; if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val)) < 0) goto failure; if (setsockopt(sock, IPPROTO_IPV6, IPV6_RECVPKTINFO, &val, sizeof(val)) < 0) goto failure; if (setsockopt(sock, SOL_SOCKET, SO_BINDTODEVICE, ifname, strlen(ifname)) < 0) goto failure; if (setsockopt(sock, SOL_SOCKET, SO_PRIORITY, &(config_dhcp->sk_prio), sizeof(config_dhcp->sk_prio)) < 0) goto failure; val = config_dhcp->dscp << 2; if (setsockopt(sock, IPPROTO_IPV6, IPV6_TCLASS, &val, sizeof(val)) < 0) { goto failure; } struct sockaddr_in6 client_addr = { .sin6_family = AF_INET6, .sin6_port = htons(DHCPV6_CLIENT_PORT), .sin6_flowinfo = 0 }; if (bind(sock, (struct sockaddr*)&client_addr, sizeof(client_addr)) < 0) goto failure; return 0; failure: if (sock >= 0) close(sock); return -1; } enum { IOV_HDR=0, IOV_ORO, IOV_CL_ID, IOV_SRV_ID, IOV_OPTS, IOV_RECONF_ACCEPT, IOV_FQDN, IOV_HDR_IA_NA, IOV_IA_NA, IOV_IA_PD, IOV_TOTAL }; int dhcpv6_get_ia_mode(void) { int mode = DHCPV6_UNKNOWN; if (na_mode == IA_MODE_NONE && pd_mode == IA_MODE_NONE) mode = DHCPV6_STATELESS; else if (na_mode == IA_MODE_FORCE || pd_mode == IA_MODE_FORCE) mode = DHCPV6_STATEFUL; return mode; } static void dhcpv6_send(enum dhcpv6_msg req_msg_type, uint8_t trid[3], uint32_t ecs) { // Build FQDN size_t fqdn_len; void *fqdn = odhcp6c_get_state(STATE_OUR_FQDN, &fqdn_len); // Build Client ID size_t cl_id_len; void *cl_id = odhcp6c_get_state(STATE_CLIENT_ID, &cl_id_len); // Get Server ID size_t srv_id_len; void *srv_id = odhcp6c_get_state(STATE_SERVER_ID, &srv_id_len); // Build IA_PDs size_t ia_pd_entry_cnt = 0, ia_pd_len = 0; uint8_t *ia_pd; struct odhcp6c_entry *pd_entries = odhcp6c_get_state(STATE_IA_PD, &ia_pd_entry_cnt); ia_pd_entry_cnt /= sizeof(*pd_entries); if (req_msg_type == DHCPV6_MSG_SOLICIT || (req_msg_type == DHCPV6_MSG_REQUEST && ia_pd_entry_cnt == 0 && pd_mode != IA_MODE_NONE)) { odhcp6c_clear_state(STATE_IA_PD); size_t n_prefixes; struct odhcp6c_request_prefix *request_prefixes = odhcp6c_get_state(STATE_IA_PD_INIT, &n_prefixes); n_prefixes /= sizeof(struct odhcp6c_request_prefix); ia_pd = alloca(n_prefixes * (sizeof(struct dhcpv6_ia_hdr) + sizeof(struct dhcpv6_ia_prefix))); for (size_t i = 0; i < n_prefixes; i++) { struct dhcpv6_ia_hdr hdr_ia_pd = { htons(DHCPV6_OPT_IA_PD), htons(sizeof(hdr_ia_pd) - DHCPV6_OPT_HDR_SIZE + sizeof(struct dhcpv6_ia_prefix) * !!request_prefixes[i].length), request_prefixes[i].iaid, 0, 0 }; struct dhcpv6_ia_prefix pref = { .type = htons(DHCPV6_OPT_IA_PREFIX), .len = htons(sizeof(pref) - DHCPV6_OPT_HDR_SIZE), .prefix = request_prefixes[i].length, .addr = request_prefixes[i].addr }; memcpy(ia_pd + ia_pd_len, &hdr_ia_pd, sizeof(hdr_ia_pd)); ia_pd_len += sizeof(hdr_ia_pd); if (request_prefixes[i].length) { memcpy(ia_pd + ia_pd_len, &pref, sizeof(pref)); ia_pd_len += sizeof(pref); } } } else { // we're too lazy to count our distinct IAIDs, // so just allocate maximally needed space ia_pd = alloca(ia_pd_entry_cnt * (sizeof(struct dhcpv6_ia_prefix) + 10 + sizeof(struct dhcpv6_ia_hdr))); for (size_t i = 0; i < ia_pd_entry_cnt; ++i) { uint32_t iaid = pd_entries[i].iaid; // check if this is an unprocessed IAID and skip if not. bool new_iaid = true; for (int j = i-1; j >= 0; j--) { if (pd_entries[j].iaid == iaid) { new_iaid = false; break; } } if (!new_iaid) continue; // construct header struct dhcpv6_ia_hdr hdr_ia_pd = { htons(DHCPV6_OPT_IA_PD), htons(sizeof(hdr_ia_pd) - DHCPV6_OPT_HDR_SIZE), iaid, 0, 0 }; memcpy(ia_pd + ia_pd_len, &hdr_ia_pd, sizeof(hdr_ia_pd)); struct dhcpv6_ia_hdr *hdr = (struct dhcpv6_ia_hdr *) (ia_pd + ia_pd_len); ia_pd_len += sizeof(hdr_ia_pd); for (size_t j = i; j < ia_pd_entry_cnt; j++) { if (pd_entries[j].iaid != iaid) continue; uint8_t ex_len = 0; if (pd_entries[j].exclusion_length > 0) ex_len = ((pd_entries[j].exclusion_length - pd_entries[j].length - 1) / 8) + 6; struct dhcpv6_ia_prefix p = { .type = htons(DHCPV6_OPT_IA_PREFIX), .len = htons(sizeof(p) - DHCPV6_OPT_HDR_SIZE_U + ex_len), .prefix = pd_entries[j].length, .addr = pd_entries[j].target }; if (req_msg_type == DHCPV6_MSG_REQUEST) { p.preferred = htonl(pd_entries[j].preferred); p.valid = htonl(pd_entries[j].valid); } memcpy(ia_pd + ia_pd_len, &p, sizeof(p)); ia_pd_len += sizeof(p); if (ex_len) { ia_pd[ia_pd_len++] = 0; ia_pd[ia_pd_len++] = DHCPV6_OPT_PD_EXCLUDE; ia_pd[ia_pd_len++] = 0; ia_pd[ia_pd_len++] = ex_len - DHCPV6_OPT_HDR_SIZE; ia_pd[ia_pd_len++] = pd_entries[j].exclusion_length; uint32_t excl = ntohl(pd_entries[j].router.s6_addr32[1]); excl >>= (64 - pd_entries[j].exclusion_length); excl <<= 8 - ((pd_entries[j].exclusion_length - pd_entries[j].length) % 8); for (size_t k = ex_len - 5; k > 0; --k, excl >>= 8) ia_pd[ia_pd_len + k] = excl & 0xff; ia_pd_len += ex_len - 5; } hdr->len = htons(ntohs(hdr->len) + ntohs(p.len) + 4U); } } } // Build IA_NAs size_t ia_na_entry_cnt, ia_na_len = 0; void *ia_na = NULL; struct odhcp6c_entry *ia_entries = odhcp6c_get_state(STATE_IA_NA, &ia_na_entry_cnt); ia_na_entry_cnt /= sizeof(*ia_entries); struct dhcpv6_ia_hdr hdr_ia_na = { .type = htons(DHCPV6_OPT_IA_NA), .len = htons(sizeof(hdr_ia_na) - DHCPV6_OPT_HDR_SIZE), .iaid = htonl(ifname_hash_iaid), .t1 = 0, .t2 = 0, }; struct dhcpv6_ia_addr ia_na_array[ia_na_entry_cnt]; for (size_t i = 0; i < ia_na_entry_cnt; ++i) { ia_na_array[i].type = htons(DHCPV6_OPT_IA_ADDR); ia_na_array[i].len = htons(sizeof(ia_na_array[i]) - DHCPV6_OPT_HDR_SIZE_U); ia_na_array[i].addr = ia_entries[i].target; if (req_msg_type == DHCPV6_MSG_REQUEST) { ia_na_array[i].preferred = htonl(ia_entries[i].preferred); ia_na_array[i].valid = htonl(ia_entries[i].valid); } else { ia_na_array[i].preferred = 0; ia_na_array[i].valid = 0; } } ia_na = ia_na_array; ia_na_len = sizeof(ia_na_array); hdr_ia_na.len = htons(ntohs(hdr_ia_na.len) + ia_na_len); // Reconfigure Accept struct { uint16_t type; uint16_t length; } reconf_accept = {htons(DHCPV6_OPT_RECONF_ACCEPT), 0}; // Option list size_t opts_len; void *opts = odhcp6c_get_state(STATE_OPTS, &opts_len); // Option Request List size_t oro_entries, oro_len = 0; uint16_t *oro, *s_oro = odhcp6c_get_state(STATE_ORO, &oro_entries); oro_entries /= sizeof(*s_oro); oro = alloca(oro_entries * sizeof(*oro)); for (size_t i = 0; i < oro_entries; i++) { struct odhcp6c_opt *opt = odhcp6c_find_opt(htons(s_oro[i])); if (opt) { if (!(opt->flags & OPT_ORO)) continue; if ((opt->flags & OPT_ORO_SOLICIT) && req_msg_type != DHCPV6_MSG_SOLICIT) continue; if ((opt->flags & OPT_ORO_STATELESS) && req_msg_type != DHCPV6_MSG_INFO_REQ) continue; if ((opt->flags & OPT_ORO_STATEFUL) && req_msg_type == DHCPV6_MSG_INFO_REQ) continue; } oro[oro_len++] = s_oro[i]; } oro_len *= sizeof(*oro); // Prepare Header struct { uint8_t type; uint8_t trid[3]; uint16_t elapsed_type; uint16_t elapsed_len; uint16_t elapsed_value; uint16_t oro_type; uint16_t oro_len; } hdr = { req_msg_type, {trid[0], trid[1], trid[2]}, htons(DHCPV6_OPT_ELAPSED), htons(2), htons((ecs > 0xffff) ? 0xffff : ecs), htons(DHCPV6_OPT_ORO), htons(oro_len), }; struct iovec iov[IOV_TOTAL] = { [IOV_HDR] = {&hdr, sizeof(hdr)}, [IOV_ORO] = {oro, oro_len}, [IOV_CL_ID] = {cl_id, cl_id_len}, [IOV_SRV_ID] = {srv_id, srv_id_len}, [IOV_OPTS] = { opts, opts_len }, [IOV_RECONF_ACCEPT] = {&reconf_accept, sizeof(reconf_accept)}, [IOV_FQDN] = {fqdn, fqdn_len}, [IOV_HDR_IA_NA] = {&hdr_ia_na, sizeof(hdr_ia_na)}, [IOV_IA_NA] = {ia_na, ia_na_len}, [IOV_IA_PD] = {ia_pd, ia_pd_len}, }; size_t cnt = IOV_TOTAL; if (req_msg_type == DHCPV6_MSG_INFO_REQ) cnt = IOV_HDR_IA_NA; // Disable IAs if not used if (na_mode == IA_MODE_NONE) { iov[IOV_HDR_IA_NA].iov_len = 0; } else if (ia_na_len == 0) { /* RFC7550 §4.2 * Solution: a client SHOULD accept Advertise messages, even * when not all IA option types are being offered. And, in * this case, the client SHOULD include the not offered IA * option types in its Request. A client SHOULD only ignore * an Advertise message when none of the requested IA * options include offered addresses or delegated prefixes. * Note that ignored messages MUST still be processed for * SOL_MAX_RT and INF_MAX_RT options as specified in * [RFC7083]. */ switch (req_msg_type) { case DHCPV6_MSG_REQUEST: if (!config_dhcp->strict_rfc7550) { /* Some broken ISPs won't behave properly if IA_NA is * sent on Requests when they have provided an empty * IA_NA on Advertise. * Therefore we don't comply with RFC7550 and omit * IA_NA as a workaround. */ iov[IOV_HDR_IA_NA].iov_len = 0; } break; case DHCPV6_MSG_SOLICIT: break; default: iov[IOV_HDR_IA_NA].iov_len = 0; break; } } if ((req_msg_type != DHCPV6_MSG_SOLICIT && req_msg_type != DHCPV6_MSG_REQUEST) || !(client_options & DHCPV6_ACCEPT_RECONFIGURE)) iov[IOV_RECONF_ACCEPT].iov_len = 0; if (!(client_options & DHCPV6_CLIENT_FQDN)) { iov[IOV_FQDN].iov_len = 0; } else { switch (req_msg_type) { /* RFC4704 §5 A client MUST only include the Client FQDN option in SOLICIT, REQUEST, RENEW, or REBIND messages. */ case DHCPV6_MSG_SOLICIT: case DHCPV6_MSG_REQUEST: case DHCPV6_MSG_RENEW: case DHCPV6_MSG_REBIND: /* RFC4704 §6 Servers MUST only include a Client FQDN option in ADVERTISE and REPLY messages... case DHCPV6_MSG_ADVERT: case DHCPV6_MSG_REPLY: */ /* leave FQDN as-is */ break; default: /* remaining MSG types cannot contain client FQDN */ iov[IOV_FQDN].iov_len = 0; break; } } struct sockaddr_in6 srv = {AF_INET6, htons(DHCPV6_SERVER_PORT), 0, ALL_DHCPV6_RELAYS, ifindex}; struct msghdr msg = {.msg_name = &srv, .msg_namelen = sizeof(srv), .msg_iov = iov, .msg_iovlen = cnt}; switch (req_msg_type) { case DHCPV6_MSG_REQUEST: case DHCPV6_MSG_RENEW: case DHCPV6_MSG_RELEASE: case DHCPV6_MSG_DECLINE: if (!IN6_IS_ADDR_UNSPECIFIED(&server_addr) && odhcp6c_addr_in_scope(&server_addr)) { srv.sin6_addr = server_addr; if (!IN6_IS_ADDR_LINKLOCAL(&server_addr)) srv.sin6_scope_id = 0; } break; default: break; } if (sendmsg(sock, &msg, 0) < 0) { char in6_str[INET6_ADDRSTRLEN]; error("Failed to send %s message to %s (%s)", dhcpv6_msg_to_str(req_msg_type), inet_ntop(AF_INET6, (const void *)&srv.sin6_addr, in6_str, sizeof(in6_str)), strerror(errno)); dhcpv6_stats.transmit_failures++; } else { dhcpv6_inc_counter(req_msg_type); } } static int64_t dhcpv6_rand_delay(int64_t time) { int random; odhcp6c_random(&random, sizeof(random)); return (time * ((int64_t)random % (config_dhcp->rand_factor*10LL))) / 10000LL; } // Message validation checks according to RFC3315 chapter 15 static bool dhcpv6_response_is_valid(const void *buf, ssize_t len, const uint8_t transaction[3], enum dhcpv6_msg req_msg_type, const struct in6_addr *daddr) { const struct dhcpv6_header *response_buf = buf; if (len < (ssize_t)sizeof(*response_buf) || memcmp(response_buf->tr_id, transaction, sizeof(response_buf->tr_id))) return false; // Invalid reply if (req_msg_type == DHCPV6_MSG_SOLICIT) { if (response_buf->msg_type != DHCPV6_MSG_ADVERT && response_buf->msg_type != DHCPV6_MSG_REPLY) return false; } else if (req_msg_type == DHCPV6_MSG_UNKNOWN) { if (!accept_reconfig || response_buf->msg_type != DHCPV6_MSG_RECONF) return false; } else if (response_buf->msg_type != DHCPV6_MSG_REPLY) { return false; } uint8_t *end = ((uint8_t*)buf) + len, *odata = NULL, rcmsg = DHCPV6_MSG_UNKNOWN; uint16_t otype, olen = UINT16_MAX; bool clientid_ok = false, serverid_ok = false, rcauth_ok = false, auth_present = false, ia_present = false, options_valid = true; size_t client_id_len, server_id_len; void *client_id = odhcp6c_get_state(STATE_CLIENT_ID, &client_id_len); void *server_id = odhcp6c_get_state(STATE_SERVER_ID, &server_id_len); dhcpv6_for_each_option(&response_buf[1], end, otype, olen, odata) { switch (otype) { case DHCPV6_OPT_CLIENTID: clientid_ok = (olen + DHCPV6_OPT_HDR_SIZE_U == client_id_len) && !memcmp( &odata[-DHCPV6_OPT_HDR_SIZE], client_id, client_id_len); break; case DHCPV6_OPT_SERVERID: if (server_id_len) serverid_ok = (olen + DHCPV6_OPT_HDR_SIZE_U == server_id_len) && !memcmp( &odata[-DHCPV6_OPT_HDR_SIZE], server_id, server_id_len); else serverid_ok = true; break; case DHCPV6_OPT_AUTH: struct dhcpv6_auth *r = (void*)&odata[-DHCPV6_OPT_HDR_SIZE]; if (auth_present) { options_valid = false; continue; } auth_present = true; if (auth_protocol == AUTH_PROT_RKAP) { struct dhcpv6_auth_reconfigure *rkap = (void*)r->data; if (r->protocol != AUTH_PROT_RKAP || r->algorithm != AUTH_ALG_HMACMD5 || r->len != 28 || rkap->reconf_type != RKAP_TYPE_HMACMD5) continue; md5_ctx_t md5; uint8_t serverhash[16], secretbytes[64]; uint32_t hash[4]; memcpy(serverhash, rkap->key, sizeof(serverhash)); memset(rkap->key, 0, sizeof(rkap->key)); memset(secretbytes, 0, sizeof(secretbytes)); memcpy(secretbytes, reconf_key, sizeof(reconf_key)); for (size_t i = 0; i < sizeof(secretbytes); ++i) secretbytes[i] ^= 0x36; md5_begin(&md5); md5_hash(secretbytes, sizeof(secretbytes), &md5); md5_hash(buf, len, &md5); md5_end(hash, &md5); for (size_t i = 0; i < sizeof(secretbytes); ++i) { secretbytes[i] ^= 0x36; secretbytes[i] ^= 0x5c; } md5_begin(&md5); md5_hash(secretbytes, sizeof(secretbytes), &md5); md5_hash(hash, 16, &md5); md5_end(hash, &md5); rcauth_ok = !memcmp(hash, serverhash, sizeof(hash)); } else if (auth_protocol == AUTH_PROT_TOKEN) { if (r->protocol != AUTH_PROT_TOKEN || r->algorithm != AUTH_ALG_TOKEN || r->len < 12) continue; uint16_t token_len = r->len - 11; if (config_dhcp->auth_token == NULL || strlen(config_dhcp->auth_token) != token_len) continue; rcauth_ok = !memcmp(r->data, config_dhcp->auth_token, token_len); } break; case DHCPV6_OPT_RECONF_MESSAGE: if (olen != 1) return false; rcmsg = odata[0]; break; case DHCPV6_OPT_IA_PD: case DHCPV6_OPT_IA_NA: ia_present = true; if (olen < sizeof(struct dhcpv6_ia_hdr) - DHCPV6_OPT_HDR_SIZE) options_valid = false; break; case DHCPV6_OPT_IA_ADDR: case DHCPV6_OPT_IA_PREFIX: case DHCPV6_OPT_PD_EXCLUDE: // Options are not allowed on global level options_valid = false; break; default: break; } } if (!options_valid || ((odata + olen) > end)) return false; if (req_msg_type == DHCPV6_MSG_INFO_REQ && ia_present) return false; if (response_buf->msg_type == DHCPV6_MSG_RECONF) { if ((rcmsg != DHCPV6_MSG_RENEW && rcmsg != DHCPV6_MSG_REBIND && rcmsg != DHCPV6_MSG_INFO_REQ) || (rcmsg == DHCPV6_MSG_INFO_REQ && ia_present) || !rcauth_ok || IN6_IS_ADDR_MULTICAST(daddr)) return false; } return clientid_ok && serverid_ok; } static int dhcpv6_handle_reconfigure(enum dhcpv6_msg orig, const int rc, const void *opt, const void *end, _o_unused const struct sockaddr_in6 *from) { uint16_t otype, olen; uint8_t *odata; enum dhcpv6_msg msg = DHCPV6_MSG_UNKNOWN; dhcpv6_for_each_option(opt, end, otype, olen, odata) { if (otype == DHCPV6_OPT_RECONF_MESSAGE && olen == 1) { switch (odata[0]) { case DHCPV6_MSG_REBIND: if (t2 != UINT32_MAX) t2 = 0; _o_fallthrough; case DHCPV6_MSG_RENEW: if (t1 != UINT32_MAX) t1 = 0; _o_fallthrough; case DHCPV6_MSG_INFO_REQ: msg = odata[0]; notice("Need to respond with %s in reply to %s", dhcpv6_msg_to_str(msg), dhcpv6_msg_to_str(DHCPV6_MSG_RECONF)); break; default: break; } } } if (msg != DHCPV6_MSG_UNKNOWN) dhcpv6_handle_reply(orig, rc, NULL, NULL, NULL); return (msg == DHCPV6_MSG_UNKNOWN? -1: (int)msg); } // Collect all advertised servers static int dhcpv6_handle_advert(enum dhcpv6_msg orig, const int rc, const void *opt, const void *end, _o_unused const struct sockaddr_in6 *from) { uint16_t olen, otype; uint8_t *odata, pref = 0; struct dhcpv6_server_cand cand = {false, false, 0, 0, {0}, IN6ADDR_ANY_INIT, DHCPV6_SOL_MAX_RT, DHCPV6_INF_MAX_RT, NULL, NULL, 0, 0}; bool have_na = false; int have_pd = 0; dhcpv6_for_each_option(opt, end, otype, olen, odata) { if (orig == DHCPV6_MSG_SOLICIT && ((otype == DHCPV6_OPT_IA_PD && pd_mode != IA_MODE_NONE) || (otype == DHCPV6_OPT_IA_NA && na_mode != IA_MODE_NONE)) && olen > sizeof(struct dhcpv6_ia_hdr) - DHCPV6_OPT_HDR_SIZE) { struct dhcpv6_ia_hdr *ia_hdr = (void*)(&odata[-DHCPV6_OPT_HDR_SIZE]); dhcpv6_parse_ia(ia_hdr, odata + olen + sizeof(*ia_hdr), NULL); } switch (otype) { case DHCPV6_OPT_SERVERID: if (olen <= DHCPV6_DUID_MAX_LEN) { memcpy(cand.duid, odata, olen); cand.duid_len = olen; } break; case DHCPV6_OPT_PREF: if (olen >= 1 && cand.preference >= 0) cand.preference = pref = odata[0]; break; case DHCPV6_OPT_UNICAST: if (olen == sizeof(cand.server_addr) && !(client_options & DHCPV6_IGNORE_OPT_UNICAST)) cand.server_addr = *(struct in6_addr *)odata; break; case DHCPV6_OPT_RECONF_ACCEPT: cand.wants_reconfigure = true; break; case DHCPV6_OPT_SOL_MAX_RT: if (olen == 4) { uint32_t sol_max_rt = ntohl_unaligned(odata); if (sol_max_rt >= DHCPV6_SOL_MAX_RT_MIN && sol_max_rt <= DHCPV6_SOL_MAX_RT_MAX) cand.sol_max_rt = sol_max_rt; } break; case DHCPV6_OPT_INF_MAX_RT: if (olen == 4) { uint32_t inf_max_rt = ntohl_unaligned(odata); if (inf_max_rt >= DHCPV6_INF_MAX_RT_MIN && inf_max_rt <= DHCPV6_INF_MAX_RT_MAX) cand.inf_max_rt = inf_max_rt; } break; case DHCPV6_OPT_IA_PD: if (olen >= sizeof(struct dhcpv6_ia_hdr) - DHCPV6_OPT_HDR_SIZE) { struct dhcpv6_ia_hdr *h = (struct dhcpv6_ia_hdr *)&odata[-DHCPV6_OPT_HDR_SIZE]; uint8_t *oend = odata + olen, *d; dhcpv6_for_each_option(&h[1], oend, otype, olen, d) { if (otype == DHCPV6_OPT_IA_PREFIX && olen >= sizeof(struct dhcpv6_ia_prefix) - DHCPV6_OPT_HDR_SIZE) { struct dhcpv6_ia_prefix *p = (struct dhcpv6_ia_prefix *)&d[-DHCPV6_OPT_HDR_SIZE]; have_pd = p->prefix; } } } break; case DHCPV6_OPT_IA_NA: if (olen >= sizeof(struct dhcpv6_ia_hdr) - DHCPV6_OPT_HDR_SIZE) { struct dhcpv6_ia_hdr *h = (struct dhcpv6_ia_hdr *)&odata[-DHCPV6_OPT_HDR_SIZE]; uint8_t *oend = odata + olen, *d; dhcpv6_for_each_option(&h[1], oend, otype, olen, d) { if (otype == DHCPV6_OPT_IA_ADDR && olen >= sizeof(struct dhcpv6_ia_addr) - DHCPV6_OPT_HDR_SIZE) have_na = true; } } break; default: break; } } if ((stateful_only_mode && !have_na && !have_pd) || (!have_na && na_mode == IA_MODE_FORCE) || (!have_pd && pd_mode == IA_MODE_FORCE)) { /* * RFC7083 states to process the SOL_MAX_RT and * INF_MAX_RT options even if the DHCPv6 server * did not propose any IA_NA and/or IA_PD */ dhcpv6_retx[DHCPV6_MSG_SOLICIT].max_timeo = cand.sol_max_rt; dhcpv6_retx[DHCPV6_MSG_INFO_REQ].max_timeo = cand.inf_max_rt; return -1; } if (na_mode != IA_MODE_NONE && !have_na) { cand.has_noaddravail = true; cand.preference -= 1000; } if (pd_mode != IA_MODE_NONE) { if (have_pd) cand.preference += 2000 + (128 - have_pd); else cand.preference -= 2000; } if (cand.duid_len > 0) { cand.ia_na = odhcp6c_move_state(STATE_IA_NA, &cand.ia_na_len); cand.ia_pd = odhcp6c_move_state(STATE_IA_PD, &cand.ia_pd_len); dhcpv6_add_server_cand(&cand); } return (rc > 1 || (pref == 255 && cand.preference > 0)) ? 1 : -1; } static int dhcpv6_commit_advert(void) { return dhcpv6_promote_server_cand(); } static int dhcpv6_handle_rebind_reply(enum dhcpv6_msg orig, const int rc, const void *opt, const void *end, const struct sockaddr_in6 *from) { dhcpv6_handle_advert(orig, rc, opt, end, from); if (dhcpv6_commit_advert() < 0) return -1; return dhcpv6_handle_reply(orig, rc, opt, end, from); } static int dhcpv6_handle_reply(enum dhcpv6_msg orig, _o_unused const int rc, const void *opt, const void *end, const struct sockaddr_in6 *from) { uint8_t *odata; uint16_t otype, olen; uint32_t refresh = config_dhcp->irt_default; int ret = 1; unsigned int state_IAs; unsigned int updated_IAs = 0; bool handled_status_codes[_DHCPV6_Status_Max] = { false, }; odhcp6c_expire(true); if (orig == DHCPV6_MSG_UNKNOWN) { static time_t last_update = 0; time_t now = odhcp6c_get_milli_time() / 1000; uint32_t elapsed = (last_update > 0) ? now - last_update : 0; last_update = now; if (t1 != UINT32_MAX) t1 -= elapsed; if (t2 != UINT32_MAX) t2 -= elapsed; if (t3 != UINT32_MAX) t3 -= elapsed; if (t1 < 0) t1 = 0; if (t2 < 0) t2 = 0; if (t3 < 0) t3 = 0; } if (orig == DHCPV6_MSG_REQUEST && !odhcp6c_is_bound()) { // Delete NA and PD we have in the state from the Advert odhcp6c_clear_state(STATE_IA_NA); odhcp6c_clear_state(STATE_IA_PD); } if (opt) { odhcp6c_clear_state(STATE_DNS); odhcp6c_clear_state(STATE_SEARCH); odhcp6c_clear_state(STATE_SNTP_IP); odhcp6c_clear_state(STATE_NTP_IP); odhcp6c_clear_state(STATE_NTP_FQDN); odhcp6c_clear_state(STATE_SIP_IP); odhcp6c_clear_state(STATE_SIP_FQDN); odhcp6c_clear_state(STATE_AFTR_NAME); odhcp6c_clear_state(STATE_S46_MAPT); odhcp6c_clear_state(STATE_S46_MAPE); odhcp6c_clear_state(STATE_S46_LW); odhcp6c_clear_state(STATE_CAPT_PORT_DHCPV6); odhcp6c_clear_state(STATE_PASSTHRU); odhcp6c_clear_state(STATE_CUSTOM_OPTS); // Parse and find all matching IAs dhcpv6_for_each_option(opt, end, otype, olen, odata) { struct odhcp6c_opt *dopt = odhcp6c_find_opt(otype); switch (otype) { case DHCPV6_OPT_IA_NA: case DHCPV6_OPT_IA_PD: if (olen > sizeof(struct dhcpv6_ia_hdr) - DHCPV6_OPT_HDR_SIZE) { struct dhcpv6_ia_hdr *ia_hdr = (void*)(&odata[-DHCPV6_OPT_HDR_SIZE]); if ((na_mode == IA_MODE_NONE && otype == DHCPV6_OPT_IA_NA) || (pd_mode == IA_MODE_NONE && otype == DHCPV6_OPT_IA_PD)) continue; // Test ID if (ia_hdr->iaid != htonl(ifname_hash_iaid) && otype == DHCPV6_OPT_IA_NA) continue; uint16_t code = DHCPV6_Success; uint16_t stype, slen; uint8_t *sdata; bool dhcpv6_successful_once = false; // Get and handle status code dhcpv6_for_each_option(&ia_hdr[1], odata + olen, stype, slen, sdata) { if (stype == DHCPV6_OPT_STATUS && slen >= 2) { uint8_t *mdata = (slen > 2) ? &sdata[2] : NULL; uint16_t mlen = (slen > 2) ? slen - 2 : 0; code = ((int)sdata[0] << 8) | ((int)sdata[1]); if (code == DHCPV6_Success) { dhcpv6_successful_once = true; continue; } dhcpv6_handle_ia_status_code(orig, ia_hdr, code, mdata, mlen, handled_status_codes, &ret); break; } } if (!dhcpv6_successful_once && code != DHCPV6_Success) continue; updated_IAs += dhcpv6_parse_ia(ia_hdr, odata + olen, &ret); } break; case DHCPV6_OPT_UNICAST: if (olen == sizeof(server_addr) && !(client_options & DHCPV6_IGNORE_OPT_UNICAST)) server_addr = *(struct in6_addr *)odata; break; case DHCPV6_OPT_STATUS: if (olen >= 2) { uint8_t *mdata = (olen > 2) ? &odata[2] : NULL; uint16_t mlen = (olen > 2) ? olen - 2 : 0; uint16_t code = ((int)odata[0] << 8) | ((int)odata[1]); dhcpv6_handle_status_code(orig, code, mdata, mlen, &ret); } break; case DHCPV6_OPT_DNS_SERVERS: if (olen % sizeof(struct in6_addr) == 0) odhcp6c_add_state(STATE_DNS, odata, olen); break; case DHCPV6_OPT_DNS_DOMAIN: odhcp6c_add_state(STATE_SEARCH, odata, olen); break; case DHCPV6_OPT_SNTP_SERVERS: if (olen % sizeof(struct in6_addr) == 0) odhcp6c_add_state(STATE_SNTP_IP, odata, olen); break; case DHCPV6_OPT_NTP_SERVER: uint16_t stype, slen; uint8_t *sdata; // Test status and bail if error dhcpv6_for_each_option(odata, odata + olen, stype, slen, sdata) { if (slen == sizeof(struct in6_addr) && (stype == NTP_MC_ADDR || stype == NTP_SRV_ADDR)) odhcp6c_add_state(STATE_NTP_IP, sdata, slen); else if (slen > 0 && stype == NTP_SRV_FQDN) odhcp6c_add_state(STATE_NTP_FQDN, sdata, slen); } break; case DHCPV6_OPT_SIP_SERVER_A: if (olen == sizeof(struct in6_addr)) odhcp6c_add_state(STATE_SIP_IP, odata, olen); break; case DHCPV6_OPT_SIP_SERVER_D: odhcp6c_add_state(STATE_SIP_FQDN, odata, olen); break; case DHCPV6_OPT_INFO_REFRESH: if (olen == 4) refresh = ntohl_unaligned(odata); break; case DHCPV6_OPT_AUTH: struct dhcpv6_auth *r = (void*)&odata[-DHCPV6_OPT_HDR_SIZE]; if (auth_protocol == AUTH_PROT_RKAP) { struct dhcpv6_auth_reconfigure *rkap = (void*)r->data; if (r->protocol == AUTH_PROT_RKAP || r->algorithm == AUTH_ALG_HMACMD5 || r->len == 28 || rkap->reconf_type == RKAP_TYPE_KEY) memcpy(reconf_key, rkap->key, sizeof(rkap->key)); } break; case DHCPV6_OPT_AFTR_NAME: if (olen > 3) { size_t cur_len; odhcp6c_get_state(STATE_AFTR_NAME, &cur_len); if (cur_len == 0) odhcp6c_add_state(STATE_AFTR_NAME, odata, olen); } break; case DHCPV6_OPT_SOL_MAX_RT: if (olen == 4) { uint32_t sol_max_rt = ntohl_unaligned(odata); if (sol_max_rt >= DHCPV6_SOL_MAX_RT_MIN && sol_max_rt <= DHCPV6_SOL_MAX_RT_MAX) dhcpv6_retx[DHCPV6_MSG_SOLICIT].max_timeo = sol_max_rt; } break; case DHCPV6_OPT_INF_MAX_RT: if (olen == 4) { uint32_t inf_max_rt = ntohl_unaligned(odata); if (inf_max_rt >= DHCPV6_INF_MAX_RT_MIN && inf_max_rt <= DHCPV6_INF_MAX_RT_MAX) dhcpv6_retx[DHCPV6_MSG_INFO_REQ].max_timeo = inf_max_rt; } break; case DHCPV6_OPT_S46_CONT_MAPT: odhcp6c_add_state(STATE_S46_MAPT, odata, olen); break; case DHCPV6_OPT_S46_CONT_MAPE: size_t mape_len; odhcp6c_get_state(STATE_S46_MAPE, &mape_len); if (mape_len == 0) odhcp6c_add_state(STATE_S46_MAPE, odata, olen); break; case DHCPV6_OPT_S46_CONT_LW: odhcp6c_add_state(STATE_S46_LW, odata, olen); break; case DHCPV6_OPT_CAPTIVE_PORTAL: /* RFC8910 §2.2 */ size_t ref_len = sizeof(URN_IETF_CAPT_PORT_UNRESTR) - 1; /* RFC8910 §2: * Networks with no captive portals may explicitly indicate this * condition by using this option with the IANA-assigned URI for * this purpose. Clients observing the URI value ... may forego * time-consuming forms of captive portal detection. */ if (memcmp(odata, URN_IETF_CAPT_PORT_UNRESTR, ref_len)) { /* RFC8910 §2.2: * Note that the URI parameter is not null terminated. * Allocate new buffer including room for '\0' */ size_t uri_len = olen + 1; uint8_t *copy = malloc(uri_len); if (!copy) continue; memcpy(copy, odata, olen); copy[uri_len] = '\0'; odhcp6c_add_state(STATE_CAPT_PORT_DHCPV6, odata, olen); free(copy); } break; default: odhcp6c_add_state(STATE_CUSTOM_OPTS, &odata[-DHCPV6_OPT_HDR_SIZE], olen + DHCPV6_OPT_HDR_SIZE); break; } // Pass-through unless explicitly disabled, for every option if (!dopt || !(dopt->flags & OPT_NO_PASSTHRU)) odhcp6c_add_state(STATE_PASSTHRU, &odata[-DHCPV6_OPT_HDR_SIZE], olen + DHCPV6_OPT_HDR_SIZE); } } // Bail out if fatal status code was received if (ret <= 0) return ret; switch (orig) { case DHCPV6_MSG_REQUEST: case DHCPV6_MSG_REBIND: case DHCPV6_MSG_RENEW: state_IAs = dhcpv6_calc_refresh_timers(); // In case there're no state IA entries // keep sending request/renew/rebind messages if (state_IAs == 0) { ret = 0; break; } switch (orig) { case DHCPV6_MSG_REQUEST: // All server candidates can be cleared if not yet bound if (!odhcp6c_is_bound()) dhcpv6_clear_all_server_cand(); odhcp6c_clear_state(STATE_SERVER_ADDR); odhcp6c_add_state(STATE_SERVER_ADDR, &from->sin6_addr, sizeof(struct in6_addr)); break; case DHCPV6_MSG_RENEW: // Send further renews if T1 is not set and if // there're IAs which were not in the Reply message if (!t1 && state_IAs != updated_IAs) { if (updated_IAs) // Publish updates notify_state_change("updated", 0, false); /* * RFC8415 states following in §18.2.10.1 : * Sends a Renew/Rebind if any of the IAs are not in the Reply * message, but as this likely indicates that the server that * responded does not support that IA type, sending immediately is * unlikely to produce a different result. Therefore, the client * MUST rate-limit its transmissions (see Section 14.1) and MAY just * wait for the normal retransmission time (as if the Reply message * had not been received). The client continues to use other * bindings for which the server did return information */ ret = -1; } break; case DHCPV6_MSG_REBIND: odhcp6c_clear_state(STATE_SERVER_ADDR); odhcp6c_add_state(STATE_SERVER_ADDR, &from->sin6_addr, sizeof(struct in6_addr)); // Send further rebinds if T1 and T2 is not set and if // there're IAs which were not in the Reply message if (!t1 && !t2 && state_IAs != updated_IAs) { if (updated_IAs) // Publish updates notify_state_change("updated", 0, false); /* * RFC8415 states following in §18.2.10.1 : * Sends a Renew/Rebind if any of the IAs are not in the Reply * message, but as this likely indicates that the server that * responded does not support that IA type, sending immediately is * unlikely to produce a different result. Therefore, the client * MUST rate-limit its transmissions (see Section 14.1) and MAY just * wait for the normal retransmission time (as if the Reply message * had not been received). The client continues to use other * bindings for which the server did return information */ ret = -1; } break; default: break; } break; case DHCPV6_MSG_INFO_REQ: // All server candidates can be cleared if not yet bound if (!odhcp6c_is_bound()) dhcpv6_clear_all_server_cand(); odhcp6c_clear_state(STATE_SERVER_ADDR); odhcp6c_add_state(STATE_SERVER_ADDR, &from->sin6_addr, sizeof(struct in6_addr)); t1 = (refresh < config_dhcp->irt_min) ? config_dhcp->irt_min : refresh; break; default: break; } return ret; } static unsigned int dhcpv6_parse_ia(void *opt, void *end, int *ret) { struct dhcpv6_ia_hdr *ia_hdr = (struct dhcpv6_ia_hdr *)opt; unsigned int updated_IAs = 0; uint32_t t1, t2; uint16_t otype, olen; uint8_t *odata; char buf[INET6_ADDRSTRLEN]; t1 = ntohl(ia_hdr->t1); t2 = ntohl(ia_hdr->t2); /* RFC 8415 §21.4 If a client receives an IA_NA with T1 greater than T2 and both T1 and T2 are greater than 0, the client discards the IA_NA option and processes the remainder of the message as though the server had not included the invalid IA_NA option. */ if (t1 > t2 && t1 > 0 && t2 > 0) return 0; info("%s %04x T1 %d T2 %d", ntohs(ia_hdr->type) == DHCPV6_OPT_IA_PD ? "IA_PD" : "IA_NA", ntohl(ia_hdr->iaid), t1, t2); // Update address IA dhcpv6_for_each_option(&ia_hdr[1], end, otype, olen, odata) { struct odhcp6c_entry entry = { .router = IN6ADDR_ANY_INIT, .auxlen = 0, .length = 0, .ra_flags = 0, .exclusion_length = 0, .target = IN6ADDR_ANY_INIT, .priority = 0, .valid = 0, .preferred = 0, .t1 = 0, .t2 = 0, .iaid = ia_hdr->iaid, }; switch (otype) { case DHCPV6_OPT_IA_PREFIX: { struct dhcpv6_ia_prefix *prefix = (void*)&odata[-DHCPV6_OPT_HDR_SIZE]; if (olen + DHCPV6_OPT_HDR_SIZE_U < sizeof(*prefix)) continue; entry.valid = ntohl(prefix->valid); entry.preferred = ntohl(prefix->preferred); if (entry.preferred > entry.valid) continue; /* RFC 8415 §21.21 Recommended values for T1 and T2 are 0.5 and 0.8 times the shortest preferred lifetime of the prefixes in the IA_PD that the server is willing to extend. */ entry.t1 = (t1 ? t1 : (entry.preferred != UINT32_MAX ? 0.5 * entry.preferred : UINT32_MAX)); entry.t2 = (t2 ? t2 : (entry.preferred != UINT32_MAX ? 0.8 * entry.preferred : UINT32_MAX)); if (entry.t1 > entry.t2) entry.t1 = entry.t2; entry.length = prefix->prefix; entry.target = prefix->addr; uint16_t stype, slen; uint8_t *sdata; // Parse sub-options for PD-exclude or error status code bool update_state = true; dhcpv6_for_each_option(odata + sizeof(*prefix) - DHCPV6_OPT_HDR_SIZE, odata + olen, stype, slen, sdata) { if (stype == DHCPV6_OPT_STATUS && slen >= 2) { /* RFC 8415 §21.22 The status of any operations involving this IA Prefix option is indicated in a Status Code option (see Section 21.13) in the IAprefix-options field. */ uint8_t *status_msg = (slen > 2) ? &sdata[2] : NULL; uint16_t msg_len = (slen > 2) ? slen - 2 : 0; uint16_t code = ((int)sdata[0]) << 8 | ((int)sdata[1]); if (code == DHCPV6_Success) continue; dhcpv6_log_status_code(code, "IA_PREFIX", status_msg, msg_len); if (ret) *ret = 0; // renewal failed } else if (stype == DHCPV6_OPT_PD_EXCLUDE && slen > 2) { /* RFC 6603 §4.2 Prefix Exclude option */ uint8_t exclude_length = sdata[0]; if (exclude_length > 64) exclude_length = 64; if (entry.length < 32 || exclude_length <= entry.length) { update_state = false; continue; } uint8_t bytes_needed = ((exclude_length - entry.length - 1) / 8) + 1; if (slen <= bytes_needed) { update_state = false; continue; } // this decrements through the ipaddr bytes masking against // the address in the option until byte 0, the option length field. uint32_t excluded_bits = 0; do { excluded_bits = excluded_bits << 8 | sdata[bytes_needed]; } while (--bytes_needed); excluded_bits >>= 8 - ((exclude_length - entry.length) % 8); excluded_bits <<= 64 - exclude_length; // Re-using router field to hold the prefix entry.router = entry.target; // base prefix entry.router.s6_addr32[1] |= htonl(excluded_bits); entry.exclusion_length = exclude_length; } } if (update_state) { if (odhcp6c_update_entry(STATE_IA_PD, &entry, 0)) updated_IAs++; info("%s/%d preferred %d valid %d", inet_ntop(AF_INET6, &entry.target, buf, sizeof(buf)), entry.length, entry.preferred , entry.valid); } entry.priority = 0; memset(&entry.router, 0, sizeof(entry.router)); break; } case DHCPV6_OPT_IA_ADDR: { struct dhcpv6_ia_addr *addr = (void*)&odata[-DHCPV6_OPT_HDR_SIZE]; if (olen + DHCPV6_OPT_HDR_SIZE_U < sizeof(*addr)) continue; entry.preferred = ntohl(addr->preferred); entry.valid = ntohl(addr->valid); if (entry.preferred > entry.valid) continue; entry.t1 = (t1 ? t1 : (entry.preferred != UINT32_MAX ? 0.5 * entry.preferred : UINT32_MAX)); entry.t2 = (t2 ? t2 : (entry.preferred != UINT32_MAX ? 0.8 * entry.preferred : UINT32_MAX)); if (entry.t1 > entry.t2) entry.t1 = entry.t2; entry.length = 128; entry.target = addr->addr; uint16_t stype, slen; uint8_t *sdata; bool update_state = true; dhcpv6_for_each_option(odata + sizeof(*addr) - DHCPV6_OPT_HDR_SIZE_U, odata + olen, stype, slen, sdata) { if (stype == DHCPV6_OPT_STATUS && slen >= 2) { /* RFC 8415 §21.6 The status of any operations involving this IA Address is indicated in a Status Code option in the IAaddr-options field, as specified in Section 21.13. */ uint8_t *status_msg = (slen > 2) ? &sdata[2] : NULL; uint16_t msg_len = (slen > 2) ? slen - 2 : 0; uint16_t code = ((int)sdata[0]) << 8 | ((int)sdata[1]); if (code == DHCPV6_Success) continue; dhcpv6_log_status_code(code, "IA_ADDR", status_msg, msg_len); if (ret) *ret = 0; // renewal failed update_state = false; } } if (update_state) { if (odhcp6c_update_entry(STATE_IA_NA, &entry, 0)) updated_IAs++; info("%s preferred %d valid %d", inet_ntop(AF_INET6, &entry.target, buf, sizeof(buf)), entry.preferred , entry.valid); } break; } default: break; } } return updated_IAs; } static unsigned int dhcpv6_calc_refresh_timers(void) { struct odhcp6c_entry *pd_entries; struct odhcp6c_entry *ia_entries; size_t ia_na_entry_cnt, ia_pd_entry_cnt, i; size_t invalid_entries = 0; int64_t l_t1 = UINT32_MAX, l_t2 = UINT32_MAX, l_t3 = 0; ia_entries = odhcp6c_get_state(STATE_IA_NA, &ia_na_entry_cnt); ia_na_entry_cnt /= sizeof(*ia_entries); for (i = 0; i < ia_na_entry_cnt; i++) { /* Exclude invalid IA_NA entries */ if (!ia_entries[i].valid) { invalid_entries++; continue; } if (ia_entries[i].t1 < l_t1) l_t1 = ia_entries[i].t1; if (ia_entries[i].t2 < l_t2) l_t2 = ia_entries[i].t2; if (ia_entries[i].valid > l_t3) l_t3 = ia_entries[i].valid; } pd_entries = odhcp6c_get_state(STATE_IA_PD, &ia_pd_entry_cnt); ia_pd_entry_cnt /= sizeof(*pd_entries); for (i = 0; i < ia_pd_entry_cnt; i++) { /* Exclude invalid IA_PD entries */ if (!pd_entries[i].valid) { invalid_entries++; continue; } if (pd_entries[i].t1 < l_t1) l_t1 = pd_entries[i].t1; if (pd_entries[i].t2 < l_t2) l_t2 = pd_entries[i].t2; if (pd_entries[i].valid > l_t3) l_t3 = pd_entries[i].valid; } if (ia_pd_entry_cnt + ia_na_entry_cnt - invalid_entries) { t1 = l_t1; t2 = l_t2; t3 = l_t3; info("T1 %"PRId64"s, T2 %"PRId64"s, T3 %"PRId64"s", t1, t2, t3); } return (unsigned int)(ia_pd_entry_cnt + ia_na_entry_cnt); } static void dhcpv6_log_status_code(const uint16_t code, const char *scope, const void *status_msg, int len) { const char *src = status_msg; char buf[len + 3]; char *dst = buf; if (len) { *dst++ = '('; while (len--) { *dst = isprint((unsigned char)*src) ? *src : '?'; src++; dst++; } *dst++ = ')'; } *dst = 0; warn("Server returned %s status '%s %s'", scope, dhcpv6_status_code_to_str(code), buf); } static void dhcpv6_handle_status_code(const enum dhcpv6_msg orig, const uint16_t code, const void *status_msg, const int len, int *ret) { dhcpv6_log_status_code(code, "message", status_msg, len); switch (code) { case DHCPV6_UnspecFail: // Generic failure *ret = 0; break; case DHCPV6_UseMulticast: switch(orig) { case DHCPV6_MSG_REQUEST: case DHCPV6_MSG_RENEW: case DHCPV6_MSG_RELEASE: case DHCPV6_MSG_DECLINE: // Message needs to be retransmitted according to RFC3315 chapter 18.1.8 server_addr = in6addr_any; *ret = 0; break; default: break; } break; case DHCPV6_NoAddrsAvail: case DHCPV6_NoPrefixAvail: if (orig == DHCPV6_MSG_REQUEST) *ret = 0; // Failure break; default: break; } } static void dhcpv6_handle_ia_status_code(const enum dhcpv6_msg orig, const struct dhcpv6_ia_hdr *ia_hdr, const uint16_t code, const void *status_msg, const int len, bool handled_status_codes[_DHCPV6_Status_Max], int *ret) { dhcpv6_log_status_code(code, ntohs(ia_hdr->type) == DHCPV6_OPT_IA_NA ? "IA_NA" : "IA_PD", status_msg, len); switch (code) { case DHCPV6_NoBinding: switch (orig) { case DHCPV6_MSG_RENEW: case DHCPV6_MSG_REBIND: if ((*ret > 0) && !handled_status_codes[code]) { dhcpv6_set_state(DHCPV6_REQUEST); *ret = -1; } break; default: *ret = 0; break; } break; case DHCPV6_NoAddrsAvail: case DHCPV6_NoPrefixAvail: break; default: *ret = 0; break; } } // Note this always takes ownership of cand->ia_na and cand->ia_pd static void dhcpv6_add_server_cand(const struct dhcpv6_server_cand *cand) { size_t cand_len, i; struct dhcpv6_server_cand *srv_candidates = odhcp6c_get_state(STATE_SERVER_CAND, &cand_len); // Remove identical DUID server candidate for (i = 0; i < cand_len / sizeof(*srv_candidates); ++i) { if (cand->duid_len == srv_candidates[i].duid_len && !memcmp(cand->duid, srv_candidates[i].duid, cand->duid_len)) { free(srv_candidates[i].ia_na); free(srv_candidates[i].ia_pd); odhcp6c_remove_state(STATE_SERVER_CAND, i * sizeof(*srv_candidates), sizeof(*srv_candidates)); break; } } for (i = 0, srv_candidates = odhcp6c_get_state(STATE_SERVER_CAND, &cand_len); i < cand_len / sizeof(*srv_candidates); ++i) { if (srv_candidates[i].preference < cand->preference) break; } if (odhcp6c_insert_state(STATE_SERVER_CAND, i * sizeof(*srv_candidates), cand, sizeof(*cand))) { free(cand->ia_na); free(cand->ia_pd); } } static void dhcpv6_clear_all_server_cand(void) { size_t cand_len, i; struct dhcpv6_server_cand *srv_candidates = odhcp6c_get_state(STATE_SERVER_CAND, &cand_len); // Server candidates need deep delete for IA_NA/IA_PD for (i = 0; i < cand_len / sizeof(*srv_candidates); ++i) { free(srv_candidates[i].ia_na); free(srv_candidates[i].ia_pd); } odhcp6c_clear_state(STATE_SERVER_CAND); } int dhcpv6_promote_server_cand(void) { size_t cand_len; struct dhcpv6_server_cand *cand = odhcp6c_get_state(STATE_SERVER_CAND, &cand_len); uint16_t hdr[2]; int ret = DHCPV6_STATELESS; bool override_ia = false; // Clear lingering candidate state info odhcp6c_clear_state(STATE_SERVER_ID); odhcp6c_clear_state(STATE_IA_NA); odhcp6c_clear_state(STATE_IA_PD); if (!cand_len) return -1; if (config_dhcp->strict_rfc7550) { if (!cand->ia_pd_len && cand->has_noaddravail) { /* Some ISPs provide neither IA_NA nor IA_PD, so we * should fallback to SLAAC. */ if (na_mode == IA_MODE_TRY) { na_mode = IA_MODE_NONE; override_ia = true; } if (pd_mode == IA_MODE_TRY) { pd_mode = IA_MODE_NONE; override_ia = true; } } } else { if (cand->has_noaddravail && na_mode == IA_MODE_TRY) { /* Some broken ISPs require a new Solicit message * without IA_NA if they haven't provided an address * on the Advertise message. */ na_mode = IA_MODE_NONE; override_ia = true; } if (!cand->ia_pd_len && pd_mode == IA_MODE_TRY) { /* Some broken ISPs require a new Solicit message * without IA_PD if they haven't provided a prefix * on the Advertise message. */ pd_mode = IA_MODE_NONE; override_ia = true; } } if (override_ia) { dhcpv6_retx[DHCPV6_MSG_SOLICIT].max_timeo = cand->sol_max_rt; dhcpv6_retx[DHCPV6_MSG_INFO_REQ].max_timeo = cand->inf_max_rt; return -1; } hdr[0] = htons(DHCPV6_OPT_SERVERID); hdr[1] = htons(cand->duid_len); odhcp6c_add_state(STATE_SERVER_ID, hdr, sizeof(hdr)); odhcp6c_add_state(STATE_SERVER_ID, cand->duid, cand->duid_len); accept_reconfig = cand->wants_reconfigure; memset(reconf_key, 0, sizeof(reconf_key)); if (cand->ia_na_len) { odhcp6c_add_state(STATE_IA_NA, cand->ia_na, cand->ia_na_len); free(cand->ia_na); if (na_mode != IA_MODE_NONE) ret = DHCPV6_STATEFUL; } if (cand->ia_pd_len) { odhcp6c_add_state(STATE_IA_PD, cand->ia_pd, cand->ia_pd_len); free(cand->ia_pd); if (pd_mode != IA_MODE_NONE) ret = DHCPV6_STATEFUL; } dhcpv6_retx[DHCPV6_MSG_SOLICIT].max_timeo = cand->sol_max_rt; dhcpv6_retx[DHCPV6_MSG_INFO_REQ].max_timeo = cand->inf_max_rt; odhcp6c_remove_state(STATE_SERVER_CAND, 0, sizeof(*cand)); return ret; } int dhcpv6_send_request(enum dhcpv6_msg req_msg_type) { struct dhcpv6_retx *retx = &dhcpv6_retx[req_msg_type]; uint64_t current_milli_time = 0; if (!retx->is_retransmit) { // Initial delay handling if (retx->max_delay) { if (retx->delay_msec == 0) { // Initial delay before starting the transaction retx->delay_msec = (dhcpv6_rand_delay((10000 * retx->max_delay) / 2) + (1000 * retx->max_delay) / 2); dhcpv6_set_state_timeout(retx->delay_msec); // Add current time to calculate absolute time retx->delay_msec += odhcp6c_get_milli_time(); return 1; } else { // Wait until delay expires current_milli_time = odhcp6c_get_milli_time(); if (current_milli_time < retx->delay_msec) { // Still waiting dhcpv6_set_state_timeout(retx->delay_msec - current_milli_time); return 1; } retx->delay_msec = 0; } } retx->is_retransmit = true; retx->rc = 0; retx->timeout = UINT32_MAX; retx->reply_ret = -1; if (req_msg_type == DHCPV6_MSG_UNKNOWN) retx->timeout = t1; else if (req_msg_type == DHCPV6_MSG_RENEW) retx->timeout = (t2 > t1) ? t2 - t1 : ((t1 == UINT32_MAX) ? UINT32_MAX : 0); else if (req_msg_type == DHCPV6_MSG_REBIND) retx->timeout = (t3 > t2) ? t3 - t2 : ((t2 == UINT32_MAX) ? UINT32_MAX : 0); if (retx->timeout == 0) return -1; notice("Starting %s transaction (timeout %"PRIu64"s, max rc %d)", retx->name, retx->timeout, retx->max_rc); // Generate transaction ID if (req_msg_type != DHCPV6_MSG_UNKNOWN) { odhcp6c_random(retx->tr_id, sizeof(retx->tr_id)); } // Record start time retx->start = odhcp6c_get_milli_time(); retx->round_start = retx->start; // Reset retransmission timeout initial value retx->rto = 0; } if (retx->rto == 0) { int64_t delay = dhcpv6_rand_delay(retx->init_timeo * 1000); // First RT MUST be strictly greater than IRT for solicit messages (RFC3313 17.1.2) while (req_msg_type == DHCPV6_MSG_SOLICIT && delay <= 0) delay = dhcpv6_rand_delay(retx->init_timeo * 1000); // First timeout retx->rto = (retx->init_timeo * 1000 + delay); } else { // Exponential back-off with randomization to avoid synchronization retx->rto = (2 * retx->rto + dhcpv6_rand_delay(retx->rto)); } if (retx->max_timeo && (retx->rto >= retx->max_timeo * 1000)) { // Cap to max timeout if set and exceeded retx->rto = retx->max_timeo * 1000 + dhcpv6_rand_delay(retx->max_timeo * 1000); } // Calculate end for this round and elapsed time retx->round_end = retx->round_start + retx->rto; uint64_t elapsed = retx->round_start - retx->start; // Don't wait too long if timeout differs from infinite if ((retx->timeout != UINT32_MAX) && (retx->round_end - retx->start > retx->timeout * 1000)) retx->round_end = retx->timeout * 1000 + retx->start; dhcpv6_set_state_timeout(retx->round_end - odhcp6c_get_milli_time()); // Built and send package switch (req_msg_type) { case DHCPV6_MSG_UNKNOWN: break; default: notice("Send %s message (elapsed %"PRIu64"ms, rc %d)", retx->name, elapsed, retx->rc); _o_fallthrough; case DHCPV6_MSG_SOLICIT: case DHCPV6_MSG_INFO_REQ: dhcpv6_send(req_msg_type, retx->tr_id, elapsed / 10); retx->rc++; } if (dhcpv6_get_state() != DHCPV6_EXIT) dhcpv6_next_state(); return 0; } int dhcpv6_receive_response(enum dhcpv6_msg req_msg_type) { ssize_t len = -1; struct dhcpv6_retx *retx = &dhcpv6_retx[req_msg_type]; uint8_t buf[1536]; union { struct cmsghdr hdr; uint8_t buf[CMSG_SPACE(sizeof(struct in6_pktinfo))]; } cmsg_buf; struct iovec iov = {buf, sizeof(buf)}; struct sockaddr_in6 addr; struct msghdr msg = {.msg_name = &addr, .msg_namelen = sizeof(addr), .msg_iov = &iov, .msg_iovlen = 1, .msg_control = cmsg_buf.buf, .msg_controllen = sizeof(cmsg_buf)}; struct in6_pktinfo *pktinfo = NULL; const struct dhcpv6_header *hdr = (const struct dhcpv6_header *)buf; // Receive cycle len = recvmsg(sock, &msg, 0); if (len < 0) { error("Error occurred when reading the response of (%s) error(%s)", retx->name, strerror(errno)); return -1; } for (struct cmsghdr *ch = CMSG_FIRSTHDR(&msg); ch != NULL; ch = CMSG_NXTHDR(&msg, ch)) { if (ch->cmsg_level == SOL_IPV6 && ch->cmsg_type == IPV6_PKTINFO) { pktinfo = (struct in6_pktinfo *)CMSG_DATA(ch); break; } } if (pktinfo == NULL) { dhcpv6_stats.discarded_packets++; return -1; } if (!dhcpv6_response_is_valid(buf, len, retx->tr_id, req_msg_type, &pktinfo->ipi6_addr)) { dhcpv6_stats.discarded_packets++; return -1; } dhcpv6_inc_counter(hdr->msg_type); uint8_t *opt = &buf[4]; uint8_t *opt_end = opt + len - DHCPV6_OPT_HDR_SIZE; retx->round_start = odhcp6c_get_milli_time(); uint64_t elapsed = retx->round_start - retx->start; notice("Got a valid %s after %"PRIu64"ms", dhcpv6_msg_to_str(hdr->msg_type), elapsed); if (retx->handler_reply) { retx->reply_ret = retx->handler_reply(req_msg_type, retx->rc, opt, opt_end, &addr); len = retx->reply_ret; } // Clamp round end (Round Trip Time) to 1s max wait after receiving a valid response (in milliseconds) if (len > 0 && retx->round_end - retx->round_start > 1000) retx->round_end = 1000 + retx->round_start; return retx->reply_ret; } int dhcpv6_state_processing(enum dhcpv6_msg req_msg_type) { struct dhcpv6_retx *retx = &dhcpv6_retx[req_msg_type]; int ret = retx->reply_ret; retx->round_start = odhcp6c_get_milli_time(); uint64_t elapsed = retx->round_start - retx->start; if (retx->round_start >= retx->round_end || ret >=0 ) { if (retx->handler_finish) ret = retx->handler_finish(); if (ret < 0 && ((retx->timeout == UINT32_MAX) || (elapsed / 1000 < retx->timeout)) && (!retx->max_rc || retx->rc < retx->max_rc)) { retx->reply_ret = -1; dhcpv6_prev_state(); } else { retx->is_retransmit = false; dhcpv6_next_state(); } } else { // This sets the response polling timeout (round_end - round_start) in milliseconds dhcpv6_set_state_timeout(retx->round_end - retx->round_start); } return ret; }