summaryrefslogtreecommitdiffstats
path: root/utils/ipmitool/patches/100-cubic_root.patch
blob: 11ebffa6d5dc569a7a60e981a90d4bd9a4e48cab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
--- a/lib/ipmi_sdr.c
+++ b/lib/ipmi_sdr.c
@@ -4399,3 +4399,146 @@ ipmi_sdr_main(struct ipmi_intf *intf, in
 
 	return rc;
 }
+
+/*							cbrt.c
+ *
+ *	Cube root
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * double x, y, cbrt();
+ *
+ * y = cbrt( x );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns the cube root of the argument, which may be negative.
+ *
+ * Range reduction involves determining the power of 2 of
+ * the argument.  A polynomial of degree 2 applied to the
+ * mantissa, and multiplication by the cube root of 1, 2, or 4
+ * approximates the root to within about 0.1%.  Then Newton's
+ * iteration is used three times to converge to an accurate
+ * result.
+ *
+ *
+ *
+ * ACCURACY:
+ *
+ *                      Relative error:
+ * arithmetic   domain     # trials      peak         rms
+ *    DEC        -10,10     200000      1.8e-17     6.2e-18
+ *    IEEE       0,1e308     30000      1.5e-16     5.0e-17
+ *
+ */
+/*							cbrt.c  */
+
+/*
+Cephes Math Library Release 2.8:  June, 2000
+Copyright 1984, 1991, 2000 by Stephen L. Moshier
+*/
+
+
+static double CBRT2  = 1.2599210498948731647672;
+static double CBRT4  = 1.5874010519681994747517;
+static double CBRT2I = 0.79370052598409973737585;
+static double CBRT4I = 0.62996052494743658238361;
+
+#ifdef ANSIPROT
+extern double frexp ( double, int * );
+extern double ldexp ( double, int );
+extern int isnan ( double );
+extern int isfinite ( double );
+#else
+/*
+double frexp(), ldexp();
+int isnan(double), isfinite(double);
+*/
+#endif
+
+double cbrt(double x)
+{
+/* double x; */
+int e, rem, sign;
+double z;
+
+#ifdef NANS
+if( isnan(x) )
+  return x;
+#endif
+#ifdef INFINITIES
+if( !isfinite(x) )
+  return x;
+#endif
+if( x == 0 )
+	return( x );
+if( x > 0 )
+	sign = 1;
+else
+	{
+	sign = -1;
+	x = -x;
+	}
+
+z = x;
+/* extract power of 2, leaving
+ * mantissa between 0.5 and 1
+ */
+x = frexp( x, &e );
+
+/* Approximate cube root of number between .5 and 1,
+ * peak relative error = 9.2e-6
+ */
+x = (((-1.3466110473359520655053e-1  * x
+      + 5.4664601366395524503440e-1) * x
+      - 9.5438224771509446525043e-1) * x
+      + 1.1399983354717293273738e0 ) * x
+      + 4.0238979564544752126924e-1;
+
+/* exponent divided by 3 */
+if( e >= 0 )
+	{
+	rem = e;
+	e /= 3;
+	rem -= 3*e;
+	if( rem == 1 )
+		x *= CBRT2;
+	else if( rem == 2 )
+		x *= CBRT4;
+	}
+
+
+/* argument less than 1 */
+
+else
+	{
+	e = -e;
+	rem = e;
+	e /= 3;
+	rem -= 3*e;
+	if( rem == 1 )
+		x *= CBRT2I;
+	else if( rem == 2 )
+		x *= CBRT4I;
+	e = -e;
+	}
+
+/* multiply by power of 2 */
+x = ldexp( x, e );
+
+/* Newton iteration */
+x -= ( x - (z/(x*x)) )*0.33333333333333333333;
+#ifdef DEC
+x -= ( x - (z/(x*x)) )/3.0;
+#else
+x -= ( x - (z/(x*x)) )*0.33333333333333333333;
+#endif
+
+if( sign < 0 )
+	x = -x;
+return(x);
+}